

Quelles aides au diagnostic d'IOA peut apporter le laboratoire de microbiologie en 2020

Matthieu Le Scouarnec

Laboratoire de Bactériologie et Hygiène

Réunion bibliographique du CRIOGO

1er Juillet 2020

Sommaire

- Introduction
- Méthodes usuelles d'identification bactérienne
- Place de la sérologie : exemple d'un kit multiplex
- Techniques de biologie moléculaire
- PCR 16S
- PCR multiplex : exemple du kit Unyvero
- NGS (Next Generation Sequencing)
- Conclusion

Introduction

 Les IOA, en particulier les infections sur prothèse, sont souvent diagnostiquées selon un faisceau d'arguments cliniques, d'imagerie, de marqueurs moléculaires, histologiques et microbiologiques

Mais dans l'idéal, un ou plusieurs germes doivent être isolés

- → Confirme l'infection
- → Conditionne l'antibiothérapie
- → Intérêt pronostic

~2% des arthroplasties de hanche et de genou vont se compliquer d'infection (Kurtz 2012 J. Arthroplasty)

Introduction

Difficultés : Cas des infections retardées, avec des germes à croissance lente parfois peu virulents et difficiles à identifier

- Biofilm
- Germes qui ne poussent pas sur les milieux de culture usuels

Ex: Mycoplasmes, Mycobactéries, Coxiella Burnetii etc

Ou plus difficilement que d'autres bactéries

Ex : Cutibacterium acnes, Finegoldia magna, Peptostreptococcus sp, fungi, Listeria monocytogenes etc

- → Difficultés de traitement et d'identification
- → Quelles techniques sont les plus efficaces aujourd'hui pour pallier ces difficultés?

Méthodes usuelles d'identification bactérienne

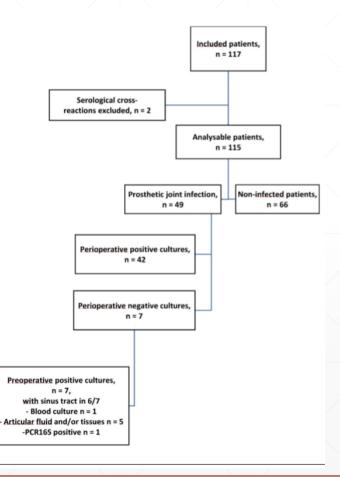
Cultures :

- Dans l'idéal 4 prélèvements; en cas d'infection sur prothèse, le liquide articulaire et des prélèvements à l'interface os/prothèse sont d'intérêt
- Mise en culture de milieux gélosés standard (gélose au sang, gélose chocolat) et d'un milieu liquide anaérobie. Incubation longue 14 jours

Méthodes usuelles d'identification bactérienne

L'ensemencement de flacons d'hémoculture après broyage (déstructuration du biofilm) des prélèvements augmente la sensibilité analytique

- Certains centres utilisent la sonication. L'étude des liquides de sonication avait montré une meilleure sensibilité que les cultures standard sans broyage (Trampuz 2007).
- Hémocultures à réaliser en parallèle, en particulier en cas de signes généraux


Méthodes usuelles d'identification bactérienne

- Cependant la sensibilité des cultures bactériennes reste imparfaite :
- → 10,7 % des cultures en cas d'infection de prothèse de hanche restent négatives dans la zone CRIOGO avec le broyage pré-culture (Bemer & al, CRIOGO 2016)
- →85% de ces infections à culture négative concernent les infections >3 mois (Malekzadeh 2010 Clin Orthop RR)
- → Malgré la certitude d'une infection de prothèse articulaire sur des critères cliniques (fistule), purulence du site péri-prothétique, critères anatomopathologiques ainsi que des signes inflammatoires, on peut être parfois dans l'incapacité d'identifier le germe responsable de l'infection :
- Décapitation préalable par une antibiothérapie
- Utilisation non optimale des méthodes microbiologiques disponibles
- Utilisation adéquate mais germes difficiles à isoler

Test sérologique multiplex : BIJ InoPlex ®

Diaxonhit

Figure 1. Flow chart of the study.

Bemer & al 2020 prospective multicentrique

- Ne teste que les IgG → Pas de datation d'infection; Pas utile en cas d'infection aiguë
- S.aureus, S.epidermidis, S.lugdunensis, S.agalactiae, C.acnes
- 16 antigènes recombinants sont greffés à la surface de microbilles en suspension qui sont mises en contact avec l'échantillon du patient dans un puits unique.

Table 1. Baseline characteristics of the study population

	Total (N = 115)	Uninfected $(n = 66)$	Infected $(n = 49)$	p value
Age (years), median (IQR)	69 (63-78)	71 (63-78)	68 (62-79)	0.969
Male sex	57 (49.6)	29 (43.9)	28 (57.1)	0.161
Immunosuppressive therapy	8/114(7)	4/65 (6.2)	4/49 (8.2)	0.678
Rheumatoid arthritis	4/114 (3.5)	2/65 (3.1)	2/49 (4.1)	0.773
Recent or ongoing antibiotic therapy	11/113 (9.7)	3/65 (4.6)	8/48 (16.7)	0.033
Hospitalization within 3 months	14/106 (13.2)	3/62 (4.8)	11/44 (25.0)	0.003
Site of prosthesis				
Hip	77 (67.0)	47 (71.2)	30 (61.2)	0.300
Knee	34 (29.6)	18 (27.3)	16 (32.6)	
Shoulder	4 (3.5)	1 (1.5)	3 (6.1)	
Time since insertion of the prosthesis (years), median (IQR)	8 (3-18)	13 (4-21)	6 (2-10)	0.001
Sinus tract	16 (13.9)	0	16 (32.6)	< 0.0001
CRP ≥10 mg/L*	45/111 (40.5)	10/64 (15.6)	35/47 (74.5)	< 0.0001
CRP (mg/L), median (IQR)	6 (1-19)	2.7 (1-6.6)	19 (7.8-32.4)	< 0.0001

Values are number (%) except where indicated otherwise. IQR, interquartile range;

^{*}Missing data for 4 patients; total population 111.

Test sérologique multiplex : BIJ InoPlex ® Diaxonhit

J. Bone Joint Infect. 2020, Vol. 5

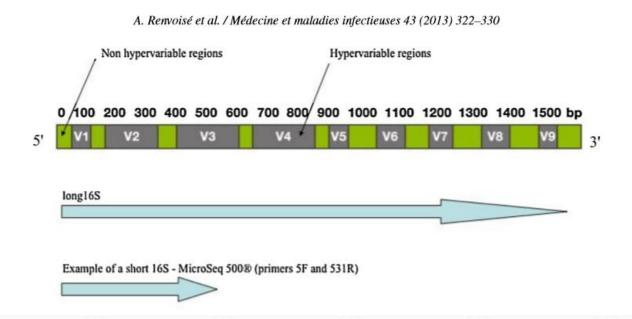
93

Table 2. Microbial species involved in the preoperative or perioperative samples

Documentation of bacterial PJI	All sites	Hip	Knee	Shoulder
Monomicrobial sepsis, n = 43				
Staphylococcus aureus	13*	9	3	1
Staphylococcus epidermidis	10	5	3	1
Staphylococcus lugdunensis	1	1	0	0
Other coagulase-negative staphylococci ^b	8	4	4	0
Streptococcus agalactiae	1	1	0	0
Streptococcus/Enterococcus spp°	5	4	1	0
Cutibacterium acnes	2	1	1	0
Corynebacterium striatum	1	1	0	0
Pseudomonas aeruginosa	1	1	0	0
Mycobacterium bovis	1	0	1	0
Polymicrobial sepsis (n = 6)				
S. aureus, S. epidermidis, C. acnes	1	0	0	1
S. lugdunensis, Finegoldia magna	1	0	1	0
S. aureus, Streptococcus dysgalactiae	1	1	0	0
S. epidermidis, F. magna	1	0	1	0
S. capitis, Enterococcus faecalis	1	1	0	0
Enterobacter cloacae, S. dysgalactiae	1	0	1	0
Total	49	30	16	3

^{*}PCR 16S positive for S. aureus, n = 1.bS. capitis, n = 5; S. warneri, n = 2; S. saprophyticus, n = 1. cS. dysgalactiae, n = 1; S. mitis/oralis, n = 1; S. mutans, n = 1; E. faecalis, n = 2.

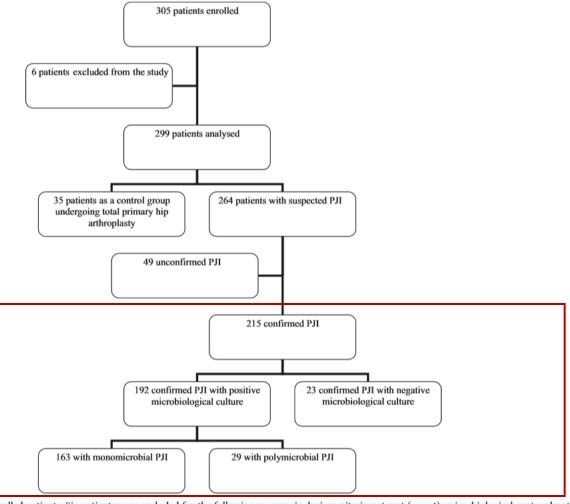
Table 3. Performances of serological tests according to cultures


Bacterial species	Infected 1	patients (n = 49)	Uninfec	ted patients (n = 66)	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)
	TP	FN	TN	FP				
Targeted Staphylococci (n=112) ^a	21	7	69	15	75 (21/28)	82.1 (69/84)	58.3 (21/36)	90.8 (69/76)
Streptococcus agalactiae (n=112) ^a	1	0	108	3	NA	97.3 (108/111)	NA	100 (108/108)
Cutibacterium acnes (n=114) ^a	0	3	93	18	NA	83.8 (93/111)	NA	96.9 (93/96)
PPV, positive predictive value; NPV, negative predictive value; TP, true positive; FP, false positive; TN, t				ue negative; FN,	false negative. N	A, not available		
*One indeterminate result excluded from	the analysis.							

Bonne VPN. Intérêt en complément de la biologie moléculaire en cas de germes potentiellement contaminants?

Autres études : Marmor et al. (Se 72.3% Spe 80.7%) De Seynes et al. (Se 87.5% et Spe 93.5%)

Techniques de biologie moléculaire : PCR 16S


- Amplification de l'ADN codant pour la sous unité 16S de l'ARNr bactérien
- Gène « universel » codant la sousunité 16S de l'ARN ribosomal bactérien (ARNr)
- Structure très conservée au cours de l'evolution des bactéries

Techniques de biologie moléculaire : PCR 16S

AVANTAGES	INCONVENIENTS
 Identification malgré une décapitation par un traitement antibiotique 	Sensibilité pas meilleure que celle de la culture
Large spectre	Pas d'information sur les mécanismes de résistance
	 Identification de germes contaminants (contamination au moment du prélèvement / lors de l'analyse)
	Temps de disponibilité des résultats assez long
Bonne valeur prédictive positive; meilleure spécificité que la culture	 Problème de l'ADN résiduel (infection antérieure / présence d'ADN dans les liquides de lavage etc)
	 Pas de détection des champignons; mauvaise détection des mycobactéries

Pour illustrer:

respected (n = 1), and patient included twice (n = 1). The 35 control patients had negative culture results. The 49 unconfirmed cases of PJI had no clinical, bacteriological, or histological evidence.

FIG 1 Flow chart of enrolled patients. Six patients were excluded for the following reasons: inclusion criteria not met (n = 4), microbiological protocol not

Etude prospective multicentrique; Prothèse de hanche

Réalisation sur 5 prélèvements périprothétiques par patient; broyage et ensemencement en flacons et Schaedler

Bemer, Plouzeau et al. 10/2014

Centre de Référence des Infections Ostéo-articulaires du Grand Ouest (CRIOGO) Study Team

Se 73.3% IC95%[66,7-79,2] 215 confirmed PJI vs Se 89% pour la culture Spe 95.5% IC95% [84.5-99.4%] 192 confirmed PJI with 23 confirmed PJI with positive culture negative culture 70% 163 with 16 treated patients monomicrobial PJI 121 with a positive 8 with a positive molecular diagnosis molecular diagnosis Peut aider si ATB mais 8 with a negative 33 with a negative manque de molecular diagnosis molecular diagnosis sensibilité 9 with PCR-inhibitors 7 untreated patients [29 with polymicrobial] 7 with a negative molecular diagnosis 22 with a positive molecular diagnosis 7 with a negative molecular diagnosis 0 with PCR-inhibitors

FIG 2 Molecular results. The 49 unconfirmed cases of PJI had no clinical, bacteriological, or histological evidence. Two patients with positive PCR results for *Listeria monocytogenes* or *Staphylococcus aureus* had been treated with antibiotics several months previously for PJIs caused by these bacteria. The diagnosis of 215 cases of PJI was confirmed according to guidelines.

Bémer et al.

TABLE 2 Results of 16S rRNA gene PCR assays and cultures for 192 microbiologically documented infections

	No. (%)	No. (%)				
Organism	Microbiologically documented PJI	Available PCR results	Positive PCR results			
S. aureus	63 (33)	62 (34)	56 (39)			
CoNS ^a	45 (23)	39 (21)	25 (17.5)			
Polymicrobial infection	29 (15)	29 (16)	22 (15.5)			
Streptococci ^b	19 (10)	19 (10)	19 (13)			
Enterococcus faecalis	3 (2)	3 (2)	2(1.5)			
Gram-negative bacillic	16 (8)	16 (9)	12 (8.5)			
Anaerobes ^d	13 (7)	11 (6)	4(3)			
Other ^e	4 (2)	4 (2)	3 (2)			
Total	192	183^f	143			

[&]quot; S. epidermidis, n=31; S. lugdunensis, n=6; Staphylococcus capitis, n=4; Staphylococcus simulans, n=2; Staphylococcus caprae, n=1; Staphylococcus haemolyticus, n=1.

Bemer, Plouzeau et al., CRIOGO, 10/2014

Centre de Référence des Infections Ostéo-articulaires du Grand Ouest (CRIOGO) Study Team

^b S. agalactiae, n=7; Streptococcus dysgalactiae, n=3; Streptococcus mitis group, n=4; S. milleri group, n=3; Streptococcus pneumoniae, n=1; Streptococcus salivarius, n=1. ^c Escherichia coli, n=5; Klebsiella, n=3; Enterobacter cloacae, n=2; Proteus mirabilis, n=2; P. aeruginosa, n=4.

 $[^]d$ P. acnes, n=10; Propionibacterium avidum, n=1; Peptoniphilus asaccharolyticus, n=1; Parvimonas micra, n=1.

 $^{^{}e}$ Listeria monocytogenes, n=2; Corynebacterium amycolatum, n=1; Bacillus cereus, n=1.

^fNine patients demonstrated PCR inhibitors.

Dans les prélèvements plurimicrobiens :

TABLE 3 Comparison of 16S rRNA gene PCR assay and culture results for 29 polymicrobial infections

		No. with available PCR results					
		Positive					
Culture results	No. of infections	1 bacterium	2 bacteriaª	Uninterpretable ^b	Negative		
2 bacteria	22 ^c	14	1	2	5		
3 bacteria	3^d	2			1		
4 bacteria	4^d	3			1		
Total	29	19	1	2	7		

[&]quot;One patient had 1 sample positive by PCR for Staphylococcus aureus and another sample positive for Streptococcus oralis.

Bemer, Plouzeau et al. 10/2014

Centre de Référence des Infections Ostéo-articulaires du Grand Ouest (CRIOGO) Study Team

→ Le plus souvent, identification d'un seul germe voire aucun

^b Results were uninterpretable because of unreadable sequences.

 $[^]c$ Twenty-two polymicrobial infections involved 2 different bacteria, i.e., 2 different staphylococcal species (n=3), staphylococci with anaerobes (n=5), staphylococci with Enterobacteriaceae (n=5), staphylococci with P. aeruginosa (n=1), staphylococci with streptococci or enterococci (n=4), staphylococci with corynebacteria (n=2), E. coli with P. aeruginosa (n=1), or Finegoldia magna with Anaerococcus vaginalis (n=1).

^d Seven polymicrobial infections were due to 3 or 4 bacteria, involving Gram-positive cocci in association with Gram-negative bacilli and anaerobes.

Techniques de biologie moléculaire : PCR multiplex : exemple du kit mPCR Unyvero i60 ITI ®

Table 2

Microorganisms of the Unyvero ITI panel

GROUP	PATHOGEN
Universal Bacteria ²	
	Staphylococcus aureus
	Coagulase-negative staphylococci 3
	Streptococcus spp. 4
	Streptococcus pneumoniae
Gram-positive	Streptococcus agalactiae
Grain-positive	Streptococcus pyogenes / dysgalactiae
	Granulicatella adiacens
	Abiotrophia defectiva
	Enterococcus spp. 5
	Enterococcus faecalis
Corynebacteriaceae	Corynebacterium spp. 6
	Escherichia coli
	Enterobacter cloacae complex 7
	Proteus spp. 8
Enterobacteriaceae	Klebsiella aerogenes (Enterobacter aerogenes)
	Klebsiella pneumoniae 9
	Klebsiella oxytoca
	Klebsiella variicola 10
	Citrobacter freundii / koseri

GROUP	PATHOGEN
Non formanting bootsrip	Pseudomonas aeruginosa
Non-fermenting bacteria	Acinetobacter baumannii complex 11
	Cutibacterium acnes (Propionibacterium acnes)
Anaerobes	Finegoldia magna
	Bacteroides fragilis group 12
	Candida spp. 13
	Candida albicans
Fungi	Candida tropicalis
	Candida glabrata
	Issatchenkia orientalis (C. krusei)

Table 3Resistence markers of the Unyvero ITI panel ¹⁸

MARKER	POSSIBLE RESISTANCE	REFERENCE
ermA	Macrolides / lincosamides	Roberts et al., FEMS Microbiol Lett, 282(2), 2008
ermC	Macrolides / lincosamides	Roberts et al., FEMS Microbiol Lett, 282(2), 2008
mecA	Oxacillin / methicillin	Carvalho et al., Braz J Infec Dis, 14(1), 2010
mecC	Oxacillin / methicillin	Katayama et al., Antimicrob Agents Chemother, 44(6), 2000
vanA	Glycopeptides	Cetinkaya et al., Clin Microbiol Rev, 13(4):686-707, 2000
vanB	Glycopeptides	Cetinkaya et al., Clin Microbiol Rev, 13(4):686-707, 2000
aac(6')/aph(2")	Aminoglycosides	Shaw et al., Microbiol Rev, 57(1), 1993
aacA4	Aminoglycosides	Shaw et al., Microbiol Rev, 57(1), 1993
ctx-M 19	3 ^{rd.} generation cephalosporins, class A	Bonnet et al., Antimicrob Agents Chemother, 45(8), 2001
imp ²⁰	Carbapenems, class B	Kawa et al., J Clin Microbiol, 34(12), 1996
kpc ²¹	Carbapenems, class A	Queenan et al., Clin Microbiol Rev, 20(3), 2007
ndm ²²	Carbapenems, class B	Cornaglia et al., Lancet Infect Dis, 11(5), 2011
oxa-23	Carbapenems, class D	Walther-Rasmussen et al., J Antimicrob Chemother, 57(3), 2006
oxa-24/40	Carbapenems, class D	Walther-Rasmussen et al., J Antimicrob Chemother, 57(3), 2006
oxa-48 ²³	Carbapenems, class D	Walther-Rasmussen et al., J Antimicrob Chemother, 57(3), 2006
oxa-58	Carbapenems, class D	Walther-Rasmussen et al., J Antimicrob Chemother, 57(3), 2006
vim ²⁴	Carbapenems, class B	Cornaglia et al., Lancet Infect Dis, 11(5), 2011

² More information on this analyte can be found in the text.

³ incl. S. saprophyticus, S. hominis, S. epidermidis, S. warneri, S. haemolyticus, S. capitis, S. lugdunensis

incl. S. pneumoniae, S. mitis, S. pyogenes, S. agalactiae, S. sanguinis, S. dysgalactiae subsp. dysgalactiae, S. dysgalactiae subsp. equisimilis, S. gordonii

⁵ incl. E. faecalis, E. faecium, E. gallinarum, E. casseliflavus, E. avium, E. hirae, E. durans, E. raffinosus

⁶ incl. C. jeikeium, C. belfanti, C. amycolatum, C. striatum, C. aurimucosum

incl. E. cloacae, E. asburiae, E. hormaechei

⁸ incl. P. vulgaris, P. mirabilis, P. penneri, P. hauseri

⁹ incl. Klebsiella pneumoniae Cluster kp I + II, Alves et al., J Clin Microbiol, 44(10), 2006; incl. Klebsiella pneumoniae subsp. ozaenae

¹⁰ Klebsiella variicola (Cluster kp III; formerly K. pneumoniae, classified as its own species in 2004)

¹¹ incl. A. baumannii, A. oleivorans, A. calcoaceticus, A. pittii

¹² incl. B. fragilis, B. thetaiotaomicron, B. ovatus, B. uniformis

¹³ More information on this analyte can be found in the text.

Techniques de biologie moléculaire : PCR multiplex; exemple du kit mPCR Unyvero i60 ITI ®

- Etude prospective multicentrique CRIOGO (Malandain, Bemer &al)
- Version 1 du kit (52 pathogènes et 19 marqueurs de résistance)
- A partir des échantillons ayant servi à l'étude précédente sur la PCR 16S

Table 1Concordance of mPCR results compared with those obtained with culture

Culture results			mPCR result	s		
	Concordant		Discord	ant		Total
		≥1 bacteria less	Difference in genus or species	≥1 bacteria more	Negative	
Monomicrobial	101	_	3	15ª	132 ^b	251
Polymicrobial	1	9^{d}	_	2	13 ^c	25
Sterile	154	0	_	10	_	164
Total	256	9	3	27	145	440

^a 13 positive in the panel.

115/145 (92%) des échantillons positifs en culture et negatifs en mPCR concernaient des germes inclus dans le panel de PCR

En lien avec un effet inoculum négatif

b 110 positive in the panel.

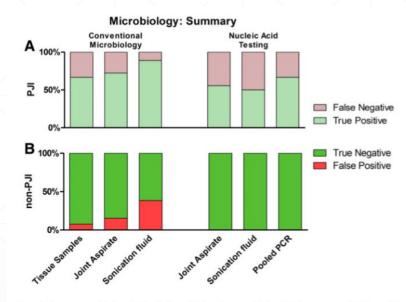
^c 5 positive in the panel.

d 7 positive in the panel.

Techniques de biologie moléculaire : PCR multiplex : exemple du kit mPCR Unyvero i60 ITI ®

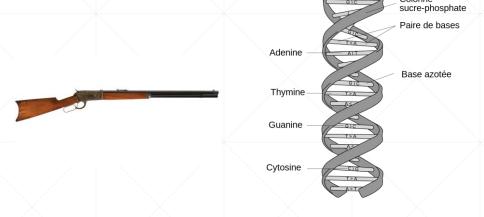
Malandain, Bemer &al

Taux de concordance avec la culture : 58% Taux de concordance avec la PCR 16S : 70%


Taux de détection du gène mecA sur les souches connues meti-R en culture : 35%

- → Des discordances avec la culture
- → Des performances moyennes
- → Un gain de temps non négligeable vs culture (résultat en 5 heures)
- → Performances à réévaluer sur de nouvelles versions du kit

Techniques de biologie moléculaire : PCR multiplex : exemple du kit mPCR Unyvero i60 ITI ®


- Hischebeth 2016 : Cultures sur liquide articulaire pré ou péri opératoires et fluides de sonication des tissus mis en culture (y compris flacons d'hémocultures) Cultures 14 jours au total
- Prospectif 31 patients
- Se 66.7% Spe 100% VPP 100% VPN 68.4%

Les autres études ont comme défaut de ne pas broyer les prélèvements ni ensemencer de flacons pour les cultures standard (Aamot, Sigmund 2018 & 2019, Borde, Villa, Suren...)

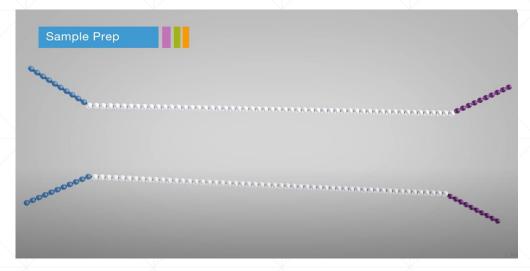
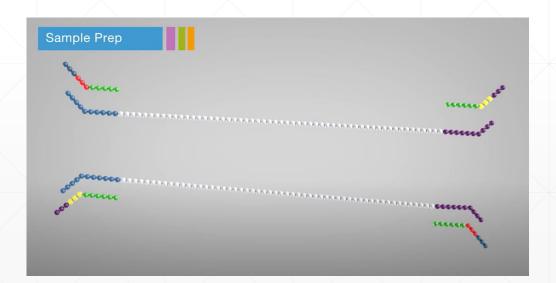
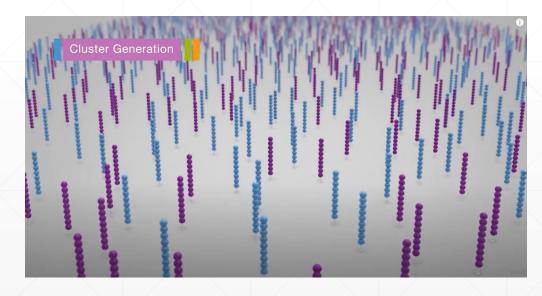
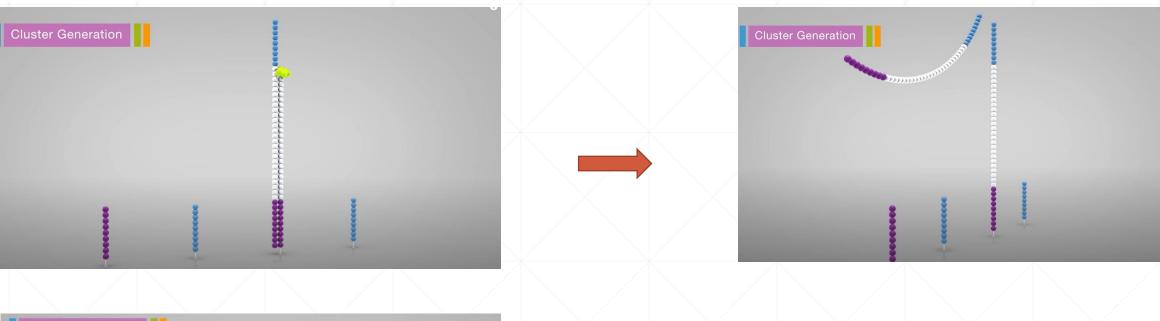


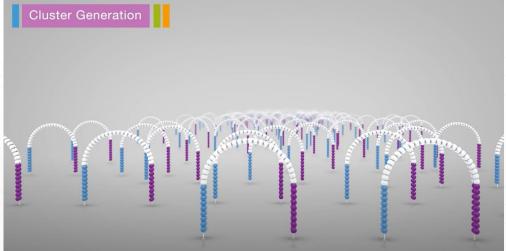
Fig. 1. Summary of microbiological methods. The graph depicts the summarized results from the patient collective. Above (A) is the group of patients matching PJI criteria, below (B) those that did not. The three left side bars represent conventional microbiology methods and the right three bars the NAT methods. False positives and false negatives are shown in red as percentage of the total. N=31 specimen for aspirate, sonication and PCR, respectively 62 for the pooled PCR data. Per patient, 3 to 5 tissue specimens were taken, and the test was regarded positive if any one of them showed growth in culture.

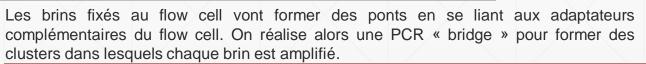

« Metagenomic shotgun »

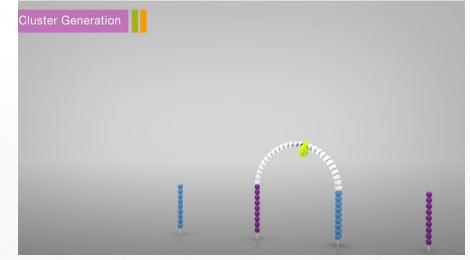
- Métagénomique : caractériser les différents génomes présents dans un échantillon
- Plusieurs milliers de brins d'ADN sont séquençables en même temps
- Préparation de librairie : prendre l'ADN, le casser aléatoirement en morceaux d'environ 300 pdb (« shotgun »)

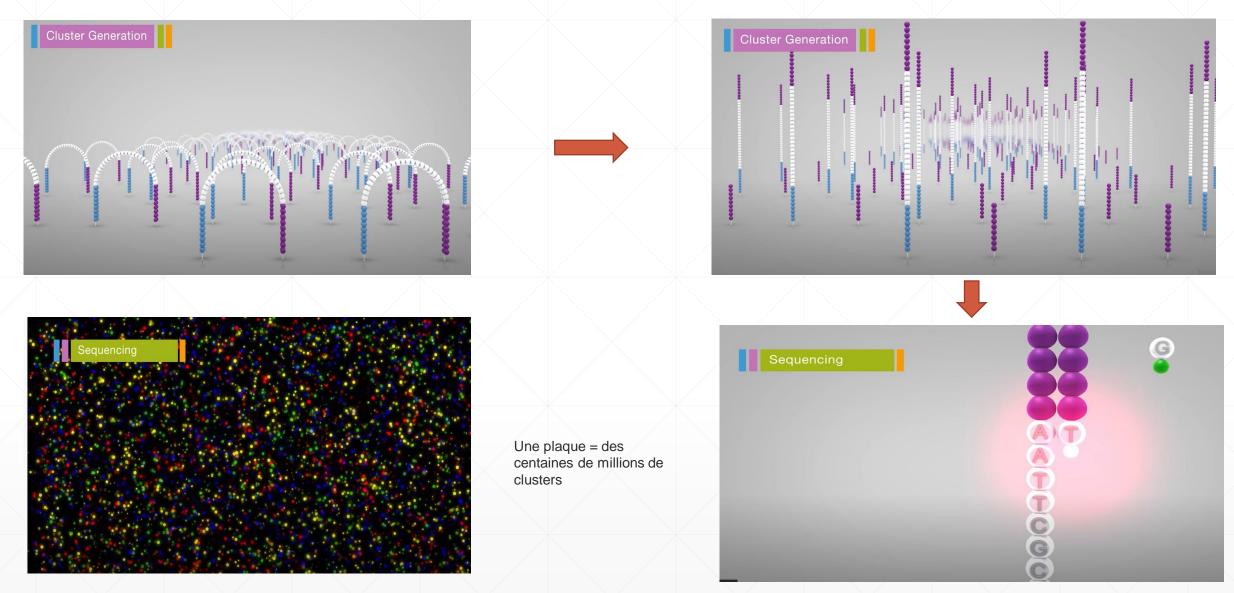


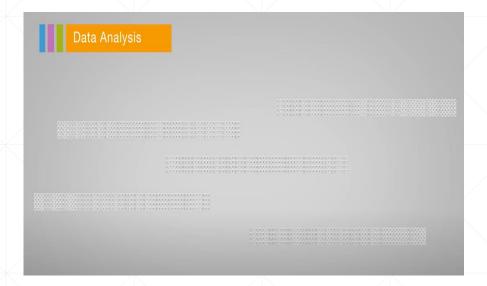

Chaque morceau est marqué avec un adaptateur aux deux extrémités

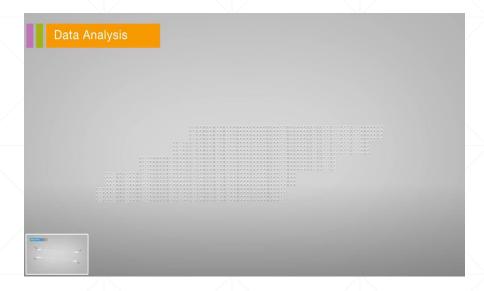


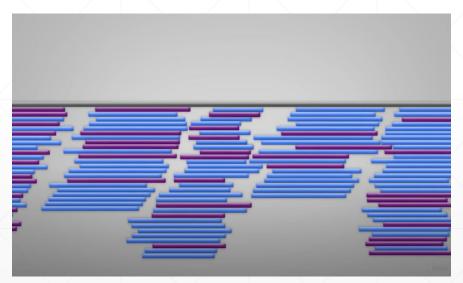


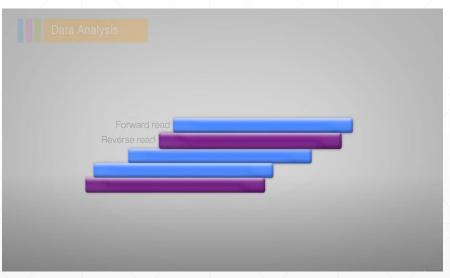

→On obtient une banque d'ADN matrice double brin; cet ADN est ensuite dénaturé, et les simple brins vont venir se fixer aléatoirement sur le « flow cell ».











Puis un séquençage par synthèse est réalisé : on ajoute à chaque cycle : amorce, ADN polymérase et les quatre 4 terminateurs réversibles marqués. Après excitation par un laser, la fluorescence émise par chaque cluster est récupérée et la première base est lue. La lecture est effectuée à chaque position sur toutes les séquences en parallèle.

On obtient ainsi des lectures ou reads qui se chevauchent. Les programmes informatiques assemblent alors ces reads grâce aux extrémités qui se chevauchent pour reconstruire la séquence d'ADN d'intérêt, d'abord sous forme de contigs, puis les contigs sont reliés entre eux en comparaison à un génome de référence.

Thoendel et al 2018 : Identification of Prosthetic Joint Infection Pathogens Using a Shotgun Metagenomic Approach; Clinical Infectious Diseases 2018

Cultures réalisées à partir des liquides de sonication (vortexage/sonication)

Table 3. Metagenomic Sequencing Versus All Cultures From All Sources (Intraoperative Tissue, Preoperative Synovial Fluid, and Sonicate Fluid)

Case Classification	Samples, No.	Identical Findings	Organisms Not Identified by Metagenomics	New Organisms Detected by Metagenomics
Aseptic failure	195	188 (96.4)	NA	7 (3.6)
Culture-positive PJI	146	121 (82.9)	16 (11.0)	12 (8.2)
Culture-negative PJI	67	46 (68.7)	NA	21 (31.3)

Abbreviations: NA, not applicable; PJI, prosthetic joint infection.

Data are the No. (%) of samples in which identical findings or discrepant findings between sonicate fluid culture and metagenomic sequencing were observed.

→ De nombreuses infections à culture négatives sont désormais documentées;

Thoendel et al 2018 : Identification of Prosthetic Joint Infection Pathogens Using a Shotgun Metagenomics Approach; Mayo Clinic; Clinical Infectious Disease

Discrepancy Between Methods	New or Missed Identifications by Metagenomics vs Sonicate Fluid Culture	New or Missed Identifications by Metagenomics vs Sonicate Fluid Culture	New or Missed Identifications by Metagenomics vs Sonicate Fluid Culture
PJI organisms not detected by metagenomics	Bacillus spp Candida albicans	Mycobacterium abscessus Porphyromonas species	Pseudomonas aeruginosa (2)
New organisms detected in aseptic failure	Cutibacterium acnes (2)	Staphylococcus aureus (3)	Streptococcus sanguinis (2)
New organisms detected in culture-positive PJI	Anaerococcus obesiensis Clostridium species C. acnes Enterobacter cloacae ^a	Finegoldia magna (3)ª Peptoniphilus harei Prevotella nanciensis S. aureus	Staphylococcus epidermidis (5) Staphylococcus lugdunensis (3) Varibaculum cambriense
New organisms detected in culture-negative PJI	Anaerococcus urinae C. albicans (2) ^a Candida parapsilosis ^a Clostridium perfringens Corynebacterium pseudogenitalium C. acnes Enterococcus faecalis (3) ^a	E. cloacae (2)ª Facklamia languida Granulicatella adiacens (2)ª Mycobacterium bovis BCGª Mycoplasma salivarium Peptoniphilus species Pasteurella multocidaª	S. aureus (10) ^a S. epidermidis (5) ^a Staphylococcus haemolyticus (2) ^a S. lugdunensis Streptococcus agalactiae (4) Streptococcus dysgalactiae (4) ^a Streptococcus oralis ^a

Abbreviation: PJI, prosthetic joint infection.

Listed are species identified or missed by shotgun metagenomics compared to sonicate fluid culture alone. Values in parentheses indicate detection in >1 subject; the number given is the number of subjects.

^aIndicates organism identified in cultures other than sonicate fluid.

 Namdari et al JSES 2018 : Etude comparative NGS et cultures dans le diagnostic des infections de prothèse d'épaule

Broyage des échantillons et milieu de transport anaérobie

→ L'interprétation des résultats du NGS semble plus difficile sur les prélèvements d'épaule que genou et hanche; Beaucoup de discordances avec la culture, et de flores polymorphes (Infection à flore polymorphe? microbiote articulaire? flore cutanée?)

Case #	Surgery	signs of PJI	lab markers	Intra-op signs of PJI (yes/no)	Cultures		Next-generation sequencing	
					Organism(s)	No. positive	Organism(s)*	No. positive
2	Single-stage	No	No	No	C. acnes	1		
6	Single-stage	No	No	No	C. acnes	4		
7	Single-stage	No	No	No	CNS (S epidermidis)	1		
9	Single-stage		No	No	CNS (S epidermidis)			
10		No	No	Yes	CNS (S epidermidis)		Ecoli, C. acnes, R insidiosa, E hormaechei, C paradoxus, A junii, A tetradius, C tuberculostearicum, C hominis, K palustris, S hominis, L crispatus, S maltophilia	3
11	Dual-stage	No	No	Yes			E coli, C. acnes, R insidiosa	2
12	Single-stage		No	No	CNS (S epidermidis)	1		
13	Single-stage		No	No	(,,		C. acnes, A radioresistens, C chromoreductans, C quinii, C hveragerdense, C acidisoli, C circulans, S agalactiae, R picettii, P aeruginosa	3
14	Single-stage	No	No	No			A radioresistens, C. acnes, G ruanii, C tuberculostearicum, S pettenkoferi, C vibrioides, B aggregatus, S cohnii	2
15	Single-stage	No	No	No	C. acnes	1	A radioresistens, C. acnes, S melonis, A calcoaceticus, S condimenti, A rhizogenes, B cepacia, S aureus, S epidermidis, C tuberculostearicum, C striatum, S mitis, B fungorum	3
16	Single-stage	No	No	No	C. acnes	1	C. acnes, A calcoaceticus, S hominis, B mycoides, S aureus, P aeruginosa, C tuberculostearicum, P saccharophilia, S melonis, S epidermidis	3
17	Single-stage	No	No	No	C. acnes	1		
18	Dual-stage	No	No	No	CNS (S epidermidis)	1		
20	Single-stage		No	No	,		S agalactiae, P aeruginosa, A radioresistens, L albida	2
21		No	Yes	Yes	B fragilis	5	B fragilis, B nordii, B thetaiotaomicron, B virosa, A radioresistens	5
22	Single-stage		No	No	C. acnes	5	, , , , , , , , , , , , , , , , , , , ,	
23	Dual-stage	No	No	No	C. acnes	5	C. acnes, M luteus, B dorei, B casei, C xerosis, A ferrireducens, R gnavus, S pettenkoferi, K rosea, B cepacia	4
25	Dual-stage	No	Yes	Yes	S aureus (MRSA)	5	S aureus (MRSA)	5
26		No	No	No	CNS	1	S epidermidis, K pneumoniae	2
27	Single-stage		No	No	C. acnes	1		-
28	Single-stage		Yes	No	C. acnes	2		
30	Single-stage		No	No	C. acnes	1	C. acnes, A radioresistens, B cepacia, S maltophilia, E coli, K oxytoca, M granosa	2
31	Single-stage		Yes	No	01 001100	-	C. acnes, C diptheriae, L agilis, B cepacia, K oxytoca, C testosteroni, A radioresistens	2
34	Single-stage		No	No			P agglomerans, P aeruginosa, B thermosphacta, S parasanguinis, L manihotivorans, C. acnes, P aeruginosa, C aurimucosum	2
36	Single-stage	No	No	No	C. acnes	3	M catarrhalis, S mitis, C kroppenstedtii, C. acnes, S piscifermentans, S lugdunensis, S pettenkoferi, S sanquinis	3
37	Dual-stage	No	No	No	C. acnes	2		
40	Single-stage		No	No	C. acnes	4		
41	Dual-stage	No	Yes	Yes	CNS (S epidermidis)	2	S epidermidis, A excentricus	4
44	-	No	Yes	No	S epidermidis	2	S epidermidis	1

PJI, prosthetic joint infection; CNS, coagulase-negative Staphylococcus; MRSA, methicillin-resistant Staphylococcus aureus

^{*} Bold font indicates that the bacterial species was identified in at least 2 specimens

Allison & al 2019 *Journal of Shoulder and Elbow Surgery*. NGS for diagnosis of infection: is more sensitive really better?

= Etude prospective observationnelle; Première arthroplastie d'épaule; exclusion si ATCD d'infection ou de chirurgie de l'épaule ou traitement antibiotique dans les 60 jours

Pas de broyat pour les cultures

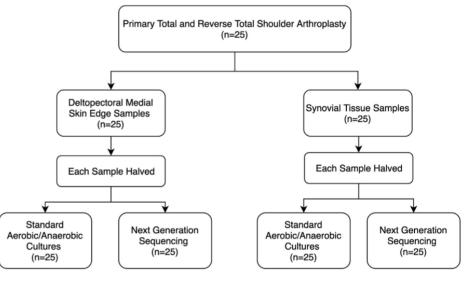
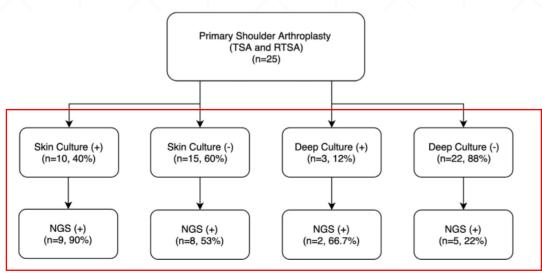



Figure 1 Study flowchart.

Figure 3 Concordance of standard culture and next-generation sequencing (NGS) results.

Beaucoup de cultures positives sur des prélèvements chez des patients **non septiques**; Autant avec le NGS -> Toujours difficile de trancher entre processus infectieux et contamination

Conclusion

- Intérêt de la biologie moléculaire en cas de cultures stériles après une antibiothérapie
- NGS : technique prometteuse
 - → Meilleure sensibilité vs culture.
- → Permet de diagnostiquer les infections plurimicrobiennes + les mécanismes de résistance rapidement
- Difficultés d'interprétation : infection vs contamination ?

Merci pour votre attention